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Online Methods

Evaluating the quality of SNP calls

Number of SNP calls and allele frequency: The number of calls and frequency for 
multi-sample calling should follow relatively closely the neutral expectation for N 
individuals for small N: 

where L is the number of confidently called bases and  is the population-specific 
heterozygosity, genome-wide of ~0.8 x 10-3 for CEPH individuals (Heng Li, 
unpublished work). A surplus of variants, especially heterozygous variants for single 
samples or lower-frequency variants for populations, is a strong indicator of false 
positives.  

dbSNP rate: Most variants are already catalogued in the dbSNP database of human 
variation.  For a single European sample, ~90% of their true variants will appear in 
dbSNP build 129 (Supplemental Table 5), which will reach ~99% following the 
completion of the 1000 Genomes Project (Supplemental Figure S1).   For 
population-level SNP calls, the aggregate dbSNP rate for the call set decreases as 
more rare variants are found, which are less frequently found in dbSNP.  
Nevertheless, the per sample dbSNP rate should remain consistent across 
individuals, though.  Note that presence in dbSNP is not an absolute confirmation 
that a variant is true (e.g., see Figure 2 and Figure 4), but since dbSNP build 129 
contains 11.6M SNP entries (only 0.4% of all genomic positions), relative differences 
between call sets with high dbSNP rates can be reasonably interpreted as quality 
differences.
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Non-reference sensitivity and non-reference discrepancy (NRD) rate: For single 
samples, comparison with non-reference (NR) genotype calls from microarray 
chips, such as HapMap3 (~1.3-1.5M sites), provides a good initial assessment of 
variant discovery sensitivity.  With sufficient coverage, >99% of non-reference sites 
can generally be discovered. The non-reference discrepancy (NRD) rate reports the 
percent of discordant genotype calls at commonly called non-reference sites on the 
chip, and should reach <1% with sufficient coverage.  Mathematical definitions of 
these terms are:

Transition/transversion ratio (Ti/Tv): is a critical metric for assessing the 
specificity of novel SNP calls.  Inter-species comparisons 35 and previous sequencing 
projects (Supplemental Table 6) agree on a Ti/Tv ratio of ~2.0-2.1 for genome-wide 
data sets and 3.0-3.3 for exonic variation36. The expected values for the Ti/Tv for 
known and novel variants genome-wide are 2.10 and 2.07, respectively, and in the 
exome target to be 3.5 and 3.0, respectively.  Currently the lower Ti/Tv ratio at 
novel sites than at known sites is due to a combination of residual false positives 
lowering the Ti/Tv, a relative deficit of transitions due to sequencing context bias, as 
well as an apparently higher transition ratio at lower frequency variation.  These 
uncertainties should limit the interpretation of minor differences in Ti/Tv ratios 
(<0.05), especially across sequencing technologies and data sets.  

The Ti/Tv ratio for randomly assigned “variation”, such as results from systematic 
sequencing errors, alignment artifacts, and data processing failures, will be ~0.5 as 
there are two transversion mutations for each transition.   Given an expected Ti/Tv 
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ratio, as above, and an observed Ti/Tv ratio from a call set, an estimate of the 
fraction of false positive variants in the call set can be obtained by:

which should be bounded above by 100% (due to Ti/Tv ratios below 0.5) and a 
minimum FP rate (here assumed to be 0.1%) when the observed Ti/Tv exceeds the 
expected value. 

Local multiple sequence realignment

We developed a local realignment algorithm that provides a consistent alignment 
among all reads spanning an indel.  The algorithm begins by first identifying regions 
for realignment where 1) at least one read contains an indel, 2) there exists a cluster 
of mismatching bases or 3) an already known indel segregates at the site (e.g. from 
dbSNP).  At each region, haplotypes are constructed from the reference sequence by 
incorporating any known indels at the site, indels in reads spanning the site, or from 
Smith-Waterman 37 alignment of all reads that do not perfectly match the reference 
sequence.  For each haplotype Hi, reads are aligned without gaps to Hi and scored 
according to:
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where Rj is the jth read, k is the offset in the gapless alignment of Rj and Hi, and j,k is 
the error rate corresponding to the declared quality score for the kth base of read Rj.  
The haplotype Hi that maximizes L(Hi) is selected as the best alternative haplotype.  
Next, all reads are realigned against just the best haplotype Hi and the reference 
(H0), and each read Rj is assigned to Hi or H0 whichever maximizes L(Rj|H).  The 
reads are realigned if the log odds ratio of the two-haplotype model is better than 
the single reference haplotype by at least 5 log units:  

This discretization reflects a trade-off between accuracy and efficient calculation of 
the full statistical quantities.  Note that this algorithm operates on all reads across 
all individual simultaneously, which ensures consistency in the inferred haplotypes 
among all individuals, a critical property for reliable indel calling and contrastive 
analyses such as somatic SNP and indel calling.  The realigned reads are written to a 
SAM/BAM file for further analysis. The reads around a homozygous deletion, before 
and after local realignment, for GA reads from the 1000 Genomes Project and HiSeq, 
are shown in Figure 2.

Base quality score recalibration

We developed a base quality recalibration algorithm that provides empirically 
accurate base quality scores for each base in every read while also correcting for 
error covariates like machine cycle and dinucleotide context, as well as supporting 
platform-specific error covariates like color-space mismatches for SOLiD and flow-
cycles for 45414-16,38,39.  For each lane, the algorithm first tabulates empirical 
mismatches to the reference at all loci not known to vary in the population (dbSNP 
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build 129), categorizing the bases by their reported quality score (R), their machine 
cycle in the read (C), and their dinucleotide context (D).  For each category we 
estimate the empirical quality score:

These covariates are then broken into linearly separable error estimates and the 
recalibrated quality score Qrecal is calculated as:

where each Q and Q are the residual differences between empirical mismatch 
rates and that implied by the reported quality score for all observations 
conditioning only on Qr or on both the covariate and Qr; Qr is the base's reported 
quality score and r is its expected error rate; br,c,d is a base with specific covariate 
values r,c,d and R,C,D are the sets of all values of reported quality scores, machine 
cycles, and dinucleotide contexts, respectively.  The quality score and covariate 
distributions for four data sets before and after quality score recalibration are 
shown in Figure 3.
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Multi-sample SNP calling

We apply a Bayesian algorithm for variant discovery and genotyping that 
simultaneously estimates the probability that two alleles A, the reference allele, and 
B, the alternative allele, are segregating in a sample of N individuals and the 
likelihoods for each of the AA, AB, and BB genotypes for each of individual.  Given Di

aligned bases at a specific genomic position for individual i, we estimate the 
genotype likelihoods GTi of observing the Di bases for each of AA, AB, and BB 
genotypes according to the following equation:

where Pr{Di,j | GTi} is the probability of observing base Di,j under the hypothesized 
genotype GTi; Pr{Di,j | B}, and also Pr{Di,j | A}, is the probability of observing base Di,j

given that the true base is B; i,j is the probability of a base miscall given the quality 
score of base Di,j; and Pr{B is true | Di,j is miscalled} is the probability of Btrue being 
the true chromosomal base given that b is a miscall (Supplemental Table 7). As these 
are raw likelihoods no prior probabilities are applied.

Let us define qi = {0,1,2} as the number of alternate B alleles carried by individual i, 

so that q  qi
i

N

 is the number of chromosomes carrying the B allele among all 

individuals.  We estimate the probability that q = X as:
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where  is the set of all genotype assignments for the N individuals that contain 
exactly q = X B alleles, Pr{q = X} is the infinite-sites neutral expectation to observe X 
alternative alleles in 2N chromosomes with heterozygosity of , and GTi  and Di are 
the ith individual’s genotype and NGS reads, respectively.  The sum over   involves 
potentially evaluating 3N combinations but can be approximated by a heuristic 
algorithm like Expectation-Maximization (EM) via the introduction of a Hardy-
Weinberg equilibrium assumption, using a greedy combinatorial search algorithm 
(Suppl. Mats), or using an exact summation (Heng Li, unpublished results).  This 
algorithm emits the probability of a variant segregating at the site at some 
frequency:

represented conventionally by the Phred-scaled confidence, as well as the genotype 
assignments at the q* value that maximizes Pr{q | D}.  Only sites with QUAL > Q50, 
for deep coverage, or Q10, for shallow coverage, respectively, are considered here as 
potentially variable sites.  

Variant Quality Score Recalibration
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Given a set of putative variants along with their four error covariates (see 
Supplementary Materials), variant quality score recalibration employs a Variational 
Bayes Gaussian mixture model (GMM)40 to estimate the probability that each 
variant is a true polymorphism in the samples rather than a sequencer, alignment, 
or data processing artifact.  The set of variants {vi} are treated as an n-dimensional 
point cloud, each variant vi positioned by its covariate annotation vector, v . A 
mixture of Gaussians is fit to the set of likely true variants, here approximated by the 
variants already present in HapMap3 (Figure 4a).  Following training, this mixture 
model is used to estimate the probability of each variant call being true (Figure 4b), 
capturing the intuition that variants with similar characteristics as previously 
known variants are likely to be real, while those with unusual characteristics are 
more likely to be machine or data processing artifacts.

Mathematically, we write the probability of a variant’s vector of covariate 
values as the linear superposition of Gaussians:

where K is the number of Gaussians in the mixture (GMM), and the last two 
equations are standard conjugate prior distributions over the parameters 

 , 
 , and 

 . 

We then use an analog of the Expectation-Maximization algorithm 40 to learn 
the optimal parameters for the clusters using only variant calls at sites present in 
HapMap3.  By restricting training to known polymorphic sites, the resulting GMM 
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captures the distribution of covariate parameters for true SNPs.  Consequently, we 
estimate the likelihood of each putative variant vi being true under the learned GMM 
as:

where Pr{vi} is the prior expectation that the putative variant vi is true, v i is the 
vector of covariate values for vi, FPsingleton is the false positive rate for singletons 
(50% here), and AC is the number of chromosomes estimated to carry the variant, 
among all called samples.  The prior probability of Pr{vi} depends on whether it is 
present in HapMap3 and its frequency in the samples being called, given an estimate 
of the false positive rate for singletons.  This model can be easily extended to include 
more training data, more prior information and/or more error covariates.

For convenience of presentation and analysis, we partition the raw SNP calls into 
tranches based on the Ti/Tv ratio of their novel variants.  For each desired novel 
false discovery rate target (FDRi), tranchei is defined as:

The first tranche is exceedingly specific but less sensitive, and each subsequent 
tranche in turn introduces additional true positive calls along with a growing 
number of false positive calls. More specificity in the learned GMM translates into 
better-separated tranches, where all true variants have high likelihoods and appear 
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in the lowest FDR tranches, while all false ones have low likelihoods and are 
excluded.  Downstream applications can select in a principled way more specific or 
more sensitive call sets or incorporate directly the recalibrated quality scores to 
avoid entirely the need to analyze only a fixed subset of calls but rather weight 
individual variant calls by their probability of being real.


